POWERAnalyzer LK601 Power Measurement

The combination of the newly developed **POWER***Analyzer* and its associated **POWER***Studio* software is an innovative system for high-precision electrical power measurement and analysis.

The multi-channel system impresses with its high bandwidth, sampling resolution and sampling rate. This allows recording and analyzing of high-frequency signal components. The LK601 is future-proof in terms of flexibility and expandability. With its characteristics it matches all requirements of modern e-drive and machine test benches.

MATUSCHEK #				ACKNOWLER			۰
	Corner (5 to 5 to 5 to 6 to 6 to 6 to 6 to 6 to	200 A (C) (0) 250 A					
	Online and Zelt	Verbindengseinstellungen	<	Sepport	ष		100
		PAdmin				0.000 s	NoN Hz
	75:28:10	192.160. 2 .238		Senice Holling CLHO I CLHO Infragranuschek, de		A 0.000 VM 0 0.000 VM C 0.000 VM 0 0.000 VM	0.000 KIA 0.000 KIA 0.900 KIA 0.500 KIA
	Lebberg	a la	Leistung		~	E 8,779 HH	2.216 868
		10.0 10.0 10.0 10.0			-10	A = -0.062% B = 0.050% C = 0.000% B = 0.01500 C = 0.34750	93.84256 * 88.58764 * 8.53314 * 8.53314 * 8.53315 * 8.53505 * 8.53605 * 8.53
		10:8 10:8 20:8 10:8 10:8				A 0.277 A 0.562 A 0.562 A 0.564 A 0.56	0.076 A 0.056 A 0.055 A 0.055 A
	Stee	- 10 10 10 10 10 10 10 10 10 10 10 10 10 1	909090	ndadadahahah	M $\tilde{\epsilon}$	A 0.315 V 0 0.226 V 0 0.273.364 V 0 0.273.278 V 0 0.273.278 V	-8,711 V 8,022 V 8,522 V 8,500 V 790,567 V
		10		nin sên sên sek sêk	-11		
	Spanning	-	Spanning		~		
		10.0		ı			
		1.0	pin pin	nin nin nin nin nin			

Accuracy (Excerpt)

	frequency	selected range Isens_factor	accuracy ± (% measured value + % range value)
	DC	1 mA - 5 mA 10 mA - 500 mA	0.05 + 0.15 0.05 + 0.1
	0.05 Hz - 45 Hz	all ranges	0.04 + 0.04
	45 Hz - 65 Hz	all ranges	0.015 + 0.03
current	65 Hz - 1 kHz	all ranges	0.04 + 0.04
	1 kHz - 10 kHz	1 mA - 5 mA	0.25 + 0.05
		10 mA - 500 mA	0.15 + 0.05
	10 kHz - 20 kHz	1 mA - 5 mA	0.5 + 0.2
		10 mA - 500 mA	0.3 + 0.2
	20 kHz - 50 kHz	1 mA - 5 mA	1.5 + 0.5
		10 mA - 500 mA	0.7 + 0.5
	50 kHz - 100 kHz	1 mA - 5 mA	3.5 + 0.5
		10 mA - 500 mA	2 + 0.5
	100 kHz - 300 kHz	all ranges	5 + 0.5

	frequency	accuracy ± (% measured value + % range value
voltage	DC 0.05 Hz - 45 Hz 45 Hz - 65 Hz 65 Hz - 1 kHz 1 kHz - 10 kHz 10 kHz - 20 kHz 20 kHz - 50 kHz 50 kHz - 100 kHz 100 kHz - 300 kHz	0.05 + 0.1 0.04 + 0.04 0.015 + 0.03 0.04 + 0.04 0.1 + 0.05 0.3 + 0.2 0.4 + 0.2 0.65 + 0.2 5 + 0.5

	frequency	selected range Isens_factor	accuracy ± (% measured value + % range value)
active power	DC	1 mA - 5 mA 10 mA - 500 mA	0.1 + 0.15 0.1 + 0.1
	0.05 Hz - 45 Hz	all ranges	0.08 + 0.04
	45 Hz - 65 Hz	all ranges	0.02 + 0.03
	65 Hz - 1 kHz	all ranges	0.08 + 0.04
	1 kHz - 10 kHz	1 mA - 5 mA	0.35 + 0.05
		10 mA - 500 mA	0.25 + 0.05
	10 kHz - 20 kHz	1 mA - 5 mA	0.8 + 0.2
		10 mA - 500 mA	0.6 + 0.2
	20 kHz - 50 kHz	1 mA - 5 mA	1.9 + 0.5
		10 mA - 500 mA	1.1 + 0.5
	50 kHz - 100 kHz	1 mA - 5 mA	4.2 + 0.5
		10 mA - 500 mA	2.7 + 0.5
	100 kHz - 300 kHz	all ranges	10 + 0.5

Effective input range:

Udc and Idc: 0 - ±130 % of the measurement range
Urms and Irms: 5 - 130 % of the measurement range

Power (DC measurement): 0 - ±130 %

(AC measurement): ±130 % of the power range when the voltage

and current range is 5 to 130%.

Conditions:

Temperature: 23 \pm 3 °C, Humidity: 35 - 70 % RH, Input waveform: Sine wave,

Power factor: 1, Common mode voltage: 0 V, Line filter: OFF, Frequency filter: 100 kHz or less when ON, after warm-up 1h,

Input range: 5 - 130 % RMS

Technical Specification

Sample rate	10 MS/s
Sample resolution	16 bit
Voltage ranges	12 ranges
	1.5 - 1000 V (RMS)
Current ranges	9 ranges
	0.5 A - 250 A (RMS) or
	1.5 A - 750 A (RMS) or
	1.5 A - 1200 A (RMS)
Bandwidth	1 MHz
Precision	< 0.05 % (for power value)
Signal latency	< 5 ns
Max. count of channels	6 per device
	(max. 30 channels in multi
	device operation)
Optional Extension	Motor card: 2x torque
	2x rotary encoders
Interfaces	Ethernet, CAN
Misc.	Includes power supply for
	external current sensors

Highspeed data acquisition

High-precision electrical power measurement

Up to six electrical power phases can be recorded and analyzed with the **POWER**Analyzer LK601 simultaneously. Especially within ¹EOL testing, the **POWER**Analyzer can fully bring out its advantages in terms of reproducibility and accuracy of measurement results. Thanks to its modular concept, it can be adjusted to changing testing environments without any problems. Therefore it also provides many opportunities for R&D activities of all kind.

A power sensing channel consists of a high-resolution current and voltage sensing path. The device operates with 12 ranges up to 1000 volts (RMS) for measuring the voltage. Currents up to 1200 amps (RMS) can be measured by selecting the appropriate sensor. The sensor power supply is already provided by the LK601. The ²DUT is sampled with up to 10 MS/s (millions of data points per second). With an measurement deviation of less than 0.05 % of the power value and a very high channel synchronity, the **POWER***Analyzer* delivers excellent high measurement accuracy even at small power factors.

In addition to the power channels the **POWER**Analyzer LK601 offers the option of recording additional physical variables. Besides an off-the-shelf equipped CAN interface, the system offers a further slot for our motor card. Herewith machine torque and position can be recorded. Thanks to this flexibility, the system can be used in a future-proof manner.

A complex user interface and a device display were deliberately omitted during development. All recorded values are displayed and analyzed centrally by the **POWER**Studio software via Ethernet. No settings have to be made on the device itself. This ensures a high degree of reproducibility and fail-safety.

Thanks to its clear structure, the **POWER**Studio software offers a high degree of customizability and flexibility. In addition to several classic views of the measured values, customized dashboards can be configured. Furthermore the software provides a powerful toolbox to create user defined calculations. The UX-friendly concept enhances the easy and intuitive operation of the **POWER**Analyzer. Our integrated real-time measurement enables seamless data acquisition even with high-frequency signals, which enables the R&D teams to dig deep into optimization of their own development.

¹EOL = END-OF-LINE ²DUT = Device Under Test

POWERAnalyzer LK601 Accessories

Motor card

Up to two torque sensors and two rotary encoders can be connected to the motor card, which was specially developed for use on machine test benches. The card supports all common sensor signal types (frequency RS422, TTL, HTL, analog).

Encoder interf	face (speed, rotation ano	gle) D-SUB15, Fem	D-SUB15, Female		
Encoder power	supply (5 V / 400 mA, she	ort-circuit proof)			
Differential:	TTL 5 V (RS422) HTL 30 V max.	A/AN, B/BN, Z/ZN A/AN, B/BN, Z/ZN	10 MHz max. 400 kHz max.		

Single Ended: TTL 5 V A, B, Z 1 MHz max. HTL 30 V max. A, B, Z 200 KHz max.

Torque sensor i	nterface (torque)	D-SUB9, Male	
Analog:	0-5 V, 0-10 V +-2.5 V, +-5 V, +-10 V	Unipolar Bipolar	15 kHz @ -3 dB 15 kHz @ -3 dB
Digital:	TTL 5 V (RS422)	A/AN	1 MHz max.

Current sensor

Danisense DS200ID

200 Arms370 Apeak

- DC - 1000 KHz

- Ratio 500 : 1

Order Number: POANCSA001

Danisense DS600ID

- 600 Arms

- 1000 Apeak

- DC - 500 KHz

- Ratio 1500 : 1

Order Number: POANCSB001

Accessories

Voltage probe

Cable length 2 m 1000 V, CAT II / 16 A Highly flexible Diameter 4 mm

Clamp 1000 V, CAT III / 32 A Ø 4 mm

Current Sensor connecting cable

Cable length 2 m

VAT Reg. No.